

Polyhedron Vol. 14, No. 2, pp. 323–326, 1995 Elsevier Science Ltd Printed in Great Britain 0277-5387/95 \$9.50+0.00

0277-5387(94)00338-6

COMMUNICATION

X-RAY CRYSTAL STRUCTURE OF $[Ni{\eta^2}-C(NBu^1)CH(SiMe_3)_2]CI(PMe_3)]$, THE FIRST STRUCTURALLY CHARACTERIZED η^2 -ALKANEIMIDOYL COMPLEX OF NICKEL

TOMAS R. BELDERRAÍN, MARGARITA PANEQUE, MANUEL L. POVEDA, VOLKER SERNAU and ERNESTO CARMONA*

Departamento de Química Inorgánica-Instituto de Ciencia de Materiales, Universidad de Sevilla-CSIC, Apdo 553, 41071 Sevilla, Spain

and

ENRIQUE GUTIÉRREZ* and ANGELES MONGE

Instituto de Ciencia de Materiales de Madrid, Facultad de Ciencias Químicas, Universidad Complutense-CSIC, 28040 Madrid, Spain

(Received 27 July 1994; accepted 24 August 1994)

Abstract—The alkylation of $[NiCl_2(PMe_3)_2]$ with Mg[CH(SiMe_3)_2]Cl yielded the alkyl dimer $[Ni{CH(SiMe_3)_2}(\mu-Cl)(PMe_3)]_2$ (1), which readily inserted CNBu^t to afford $[Ni{\eta^2-C(NBu^t)CH(SiMe_3)_2}Cl(PMe_3)]$ (4); spectroscopic and X-ray studies reveal this complex contains an η^2 -alkaneimidoyl ligand.

The migratory insertion of carbon monoxide and organic isocyanides into transition metal-carbon bonds are reactions of fundamental importance in organometallic chemistry.¹ With some exceptions,² η^2 -acyl or η^2 -iminoacyl (alkaneimidoyl) structures are characteristics of compounds of the early tran-

sition metals, the lanthanides and the actinides.^{1,3,4} Later transition elements give predominantly η^1 formulations, although η^2 -alkaneimidoyl complexes of Fe, Ru and Co are known⁵ and bridging η^2 -alkaneimidoyl linkages have also been demonstrated ^{6,7} for some late elements.

We have recently shown that the existence of bulky environments favours the formation of η^2 alkaneimidoyl complexes of nickel.⁸ Although these species were characterized by spectroscopic techniques, single crystals could not be obtained for any of the compounds prepared thus preventing their structural characterization by X-ray methods. Using a similar approach, now based on the use of the bulky bis(trimethylsilyl)methyl alkyl group, CH(SiMe₃)₂, we have carried out the first X-ray structural characterization of an η^2 -alkaneimidoyl complex of nickel, [Ni{ η^2 -C(NBu⁺)CH(SiMe₃)₂} Cl(PMe₃)] (4). Attempts to prepare an analogous η^2 -acyl derivative have proved unsuccessful.

The slow reaction of the chloride complex $[NiCl_2 (PMe_3)_2]$ with stoicheiometric amounts of the Grignard reagent Mg[CH(SiMe_3)_2]Cl occurred with loss of PMe_3 and formation[†] of the alkyl derivative $[Ni{CH(SiMe_3)_2}(\mu-Cl)(PMe_3)]_2$ (1) (Scheme 1).

^{*} Authors to whom correspondence should be addressed. \dagger To a cold (-50°C) suspension of [NiCl₂(PMe₃)₂] (3.00 g, 10.6 mmol) in Et₂O (100 cm²), Mg[CH (SiMe₃)₂]Cl was added (16.6 cm³ of a solution 0.64 M in Et₂O, ca 10.6 mmol) and the resulting mixture stirred for 2 h at this temperature and for a further 16 h at room temperature. After removal of the volatiles in vacuo, extraction with three portions of petroleum ether (45 cm³) and cooling at -20° C, compound 1 was obtained as red-violet crystals in 65% yield (2.25 g). Mol. wt. (cryoscopically in C₆H₆, N₂) Found: 679. Calc. for C₂₀H₅₆Cl₂Ni₂P₂Si₄: 659. Found: C, 36.3; H, 8.6. Calc. for C₂₀H₅₆Cl₂Ni₂P₂Si₄: C, 36.4; H, 8.6%. ¹H NMR (200 MHz, C_6D_6) δ -1.40 [d, 1 H, ${}^{3}J(H-P)$ 17.2 Hz, Ni-CH], 0.60 [s, 18 H, $(SiMe_3)_2$], 0.72 [d, 9 H, $^2J(H-P)$ 9.7 Hz, PMe₃]. ³¹P-{¹H} NMR (C₆D₆) δ -15.6 s. ¹³C-{¹H} NMR (C₆D₆) δ - 5.8 [d, ²J(C-P) 24 Hz, Ni-CH], 4.7 [s, $(SiMe_3)_2$], 14.4 [d, ¹J(C-P) 32 Hz, PMe₃].

Analytical and molecular weight (cryoscopically in benzene) determinations are in accord with the proposed dimeric formulation.⁹ Since related alkyl compounds *trans*-[Ni(R)Cl(PMe₃)₂]¹⁰ (R = CH₂ SiMe₃, CH₂CMe₂Ph) show no tendency to lose one of the PMe₃ ligands and undergo concomitant dimerization, the formation of 1 by the reaction route depicted in Scheme 1 is very likely directed by the steric requirements of the alkyl group. Addition of an excess of PMe₃ (3–4 equivalents) to solutions of 1 gave the expected alkyl monomer *cis*-[Ni{CH(SiMe₃)₂}Cl(PMe₃)₂] (2).*

The rather unusual *cis* geometry of this complex seems to be a consequence of the steric bulkiness of the alkyl group. Compound **2** loses PMe₃ slowly in solution, although it is sufficiently stable at room temperature for full spectroscopic characterization. A related compound, *cis*-[Ni{CH(SiMe₃)₂} Cl(dmpe)] (3) (dmpe = Me₂PCH₂CH₂PMe₂) can be obtained by reaction of **1** with the diphosphine ligand. Not unexpectedly, the chelating nature of dmpe provides enhanced stability of **3**, as compared to **2**.

To fulfil the main goals of this work, namely the isolation of η^2 -acyl and η^2 -iminoacyl complexes of nickel, the reactions of 1 with carbon monoxide and CNBu^t were investigated. Most unfortunately, the reaction of 1 (or 2) with carbon monoxide did not give an isolable acyl, even when effected by low temperatures ($ca - 50^{\circ}$ C) and employing stoicheiometric amounts of carbon monoxide. Instead it provided the known carbonyl cluster Ni₄(CO)₆ $(PMe_3)_4$,¹¹ together with some other unidentified products. The reaction of 1 with CNBu^t followed a different course yielding (1 equivalent CNBu^t, -30° C) an orange crystalline solid of analytical composition[†] "Ni[CH(SiMe₃)₂]Cl(CNBu^t) (PMe₃)", which exists as a monomeric species, both in solution and in the solid state (vide infra). The observation of a medium intensity IR absorption at ca 1675 cm⁻¹ and of a ${}^{13}C-{}^{1}H$ NMR resonance

^{*} Satisfactory analytical and spectroscopic data for all new compounds have been obtained.

[†]To a solution of compound 1 (0.24 g, 0.36 mmol) in Et₂O (60 cm³), cooled at -50° C, CNBu^t was added (0.7 cm^3 of a *ca* 1 M solution in THF). The mixture was slowly warmed to -30° C and evaporated to dryness at this temperature. The yellow residue was extracted with 30 cm³ of a 1:1 petroleum ether/diethyl ether mixture and after centrifugation, concentration to $ca \ 15 \ cm^3$ and cooling to -30° C, yellow crystals of 4 (0.27 g, ca 0.66 mmol) were isolated in ca 90% yield. Recrystallization of this material from Et₂O gave crystals of analytical purity. Mol. wt. (cryoscopically in C₆H₆, N₂) Found: 416. Calc. for C₁₅H₃₇ClNNiPSi₂: 413. Found: C, 43.3; H, 8.9; N, 3.3. Calc. for C₁₅H₃₇ClNNiPSi₂: C, 43.6; H, 9.0; N, 3.4%. ¹H NMR (200 MHz, C_6D_6) δ 0.04 [s, 18 H, $(SiMe_3)_2$], 1.11 [d, 9 H, $^2J(H - P)$ 8.1 Hz, PMe₃], 1.35 $(s, 9 H, CMe_3), 1.67 [s, 1 H, CH(SiMe_3)_2].$ ³¹P-{¹H} NMR (C₆D₆) δ -9.5 s. ¹³C-{¹H} NMR (CD₃COCD₃) δ 0.74 $[s, (SiMe_3)_2]$, 16.1 [d, $^1J(C-P)$ 26 Hz, PMe₃], 23.3 [d, $^{3}J(C-P)$ 4 Hz, CH(SiMe₃)₂], 29.8 (s, CMe₃), 57.3 (s, CMe_3), 163.6 [d, ${}^{2}J(C-P)$ 13 Hz, Ni-C=N].

in the proximity of δ 164 [d, ²J(C-P) 13 Hz] suggests that this complex contains an η^2 -alkaneimidovl ligand resulting from the insertion of a molecule of CNBu^t into the Ni-C bond of 1, and it should therefore be formulated as $[Ni\{n^2-C(NBu^t)\}]$ $CH(SiMe_3)_2$ Cl(PMe_3)] (4). Although neither the value of v(C=N) nor the chemical shift of the metal-bound alkaneimidoyl carbon can be used as consistent parameters for the identification of the bonding mode of the alkaneimidoyl ligand,⁸ the similarity of the above values with those previously found for related η^2 -alkaneimidoyl complexes of nickel⁸ supports the dihapto formulation. For example, Ni- η^1 -C(NBu^t)R linkages are characterized by v(C=N) and $\delta(Ni-C)$ values of around 1600 cm⁻¹ and 185 ppm, respectively,⁸ while for Ni- η^2 -C(NBu^t)R units corresponding values are of *ca* 1700 cm⁻¹ and 170 ppm, respectively.

To confirm the validity of the above spectroscopic assignments and to unequivocally ascertain the bonding mode of the alkaneimidoyl ligand, an X-ray structural determination of **4** has been undertaken. Figure 1 shows an ORTEP¹² perspective view of the molecules of **4** and includes also some relevant bond distances and angles.* If the alkaneimidoyl ligand is considered to occupy a single coordination site [the bite angle C(1)—Ni—N is

Fig. 1. Molecular structure of **4** and atom labelling scheme. Selected bond distances (Å) and angles (°) include the following: Ni—N = 1.82(1); Ni—C(1) = 1.84(1); Ni—Cl = 2.239(5); Ni—P = 2.153(5); N— C(1) = 1.23(2); N—Ni—C(1) = 39.3(6); P—Ni—C(1) = 117.9(5); N—Ni—Cl = 108.0(4); P—Ni—Cl = 95.0(2).

only of 39.3(6)°] the Ni atom is in a planar threecoordinate environment, consisting of the chloro, phosphine and alkaneimidoyl ligands. The most interesting feature of this structure is doubtless the Ni- η^2 -alkaneimidoyl linkage which displays short Ni-C(1) and Ni-N bonding interactions [1.84(1) and 1.82(1) Å, respectively] and also a short C(1)—N bond of 1.23(2) Å, intermediate between a double (1.31 Å) and a triple (1.16 Å) bond. In the recently prepared $[(Me_3P)_2BrNi{\mu_2,\eta^2-C(NXy)CH_2-}$ $o-C_6H_4$ NiBr(PMe₃)] complex (Xy = 2,6-dimethylphenyl), that contains a bridging n^2 -alkaneimidoyl ligand,⁷ the corresponding distances are (Ni-C) 1.866(9) Å, (Ni—N) 1.977(8) Å and (C—N) 1.312(11) Å, respectively. The relative short C(1)-N bond in 4 compares well with the analogous distance in η^2 -imidoyl complexes of the early transition metals, thus showing that short C-N interations are not exclusive to the latter compounds, but it is in contrast with the relatively long C-N bond of 1.301(1) Å found in the ruthenium complex $[Ru{C(N-p-tol)p-tol}Cl(CO)$ $(PPh_3)_2$].^{5a}

Acknowledgements—We gratefully acknowledge financial support from the Dirección General de Investigación Científica y Técnica (Proyecto PB-87201) and the Junta de Andalucía. T.R.B. thanks the Spanish Ministerio de Educación y Ciencia for a research grant and V.S. thanks the Erasmus Program for an exchange grant. Thanks are also due to the University of Sevilla for the use of analytical and NMR facilities.

^{*} Crystal data for 4: $C_{15}H_{37}CINNiPSi_2$, M = 412.7, orthorhombic, $P2_12_12_1$, a = 10.959(2), b = 11.126(5), c = 19.56(1) Å, U = 2385(2) Å³, Z = 4, $D_c = 1.15$ g cm^{-3} , λ (Mo-K α) = 0.71069 Å (graphite monochromator), $\mu = 10.9$ cm⁻¹, 295 K, Kappa diffractometer, $\omega/2\theta$ scan technique. An orange crystal $(0.3 \times 0.2 \times 0.2 \text{ mm})$ was coated with an epoxy resin and mounted in a Kappa diffractometer. The cell dimensions were refined by least squares, fitting the values of 25 reflections. The intensities were corrected for Lorentz and polarization effects. Of 4681 reflections measured, 1660 $[I \ge 2\sigma(I)]$ were used in the refinement. Scattering factors for neutral atoms and anomalous dispersion corrections for Ni, P, Si and Cl were taken from the International Tables for X-Ray Crystallography.¹³ The structure was solved by Patterson and Fourier methods. An empirical absorption correction¹⁴ was applied at the end of the isotropic refinement. There exists some non-resolvable disorder from the thermal motions of the C atoms of the methyl groups. Consequently these atoms were only refined isotropically. No trend in $\Delta F vs F$ or sin θ/λ was observed. A final mixed refinement with unit weights and fixed isotropic factors and coordinates for H atoms was undertaken. R = 0.073 and $R_w = 0.079$. A final difference synthesis showed no significant electron density. Most of the calculations were carried out with the XRAY 80 system.¹⁵ Atomic coordinates, thermal parameters and bond lengths and angles have been deposited as supplementary material.

REFERENCES

- L. D. Durfee and I. P. Rothwell, *Chem. Rev.* 1988, 88, 1059; H. Werner, *Angew. Chem.*, *Int. Ed. Engl.* 1990, 29, 1077.
- G. Erker, M. Mena, C. Krüger and R. Noe, Organometallics 1991, 10, 1201; R. Fandos, A. Meetsma and J. H. Teuben, Organometallics 1991, 10, 2665; K. Mashima, H. Haraguchi, A. Ohyoshi, N. Sakai and H. Takaya, Organometallics 1991, 10, 2731; Z. Guo, D. S. Swenson, A. S. Guram and R. F. Jordan, Organometallics 1994, 13, 766.
- 3. V. Skagestad and M. Tilset, *Organometallics* 1992, 11, 3293, and references cited therein.
- P. Zanella, G. Paolucci, G. Rosseto, F. Benetollo, A. Polo, R. D. Fischer and G. Bombieri, J. Chem. Soc., Chem. Commun. 1985, 96; A. L. Gerrit, J. Vogelzang and J. A. Teuben, Organometallics 1992, 11, 2273; A. Antiñolo, M. Fajardo, R. Gil-Sanz, C. López-Mardomingo, A. Otero, A. Atmani, M. M. Kubicki, S. El Krami, Y. Mugnier and Y. Mourad, Organometallics 1994, 13, 1200.
- (a) W. R. Roper, G. E. Taylor, J. Waters and L. J. Wright, J. Organomet. Chem. 1978, 157, C27; (b) H. Werner, S. Lotz and B. Heiser, J. Organomet. Chem. 1981, 209, 197; (c) G. Bellachioma, G. Cardaci, A. Macchioni and G. Reichenbach, Inorg. Chem. 1992, 31, 63.
- R. Usón, J. Forniés, P. Espinet, E. Lalinde, A. García, P. G. Jones, K. Meyer-Bäse and G. M. Sheldrick, J. Chem. Soc., Dalton Trans. 1986, 259; D.

Seyferth and J. B. Hoke, Organometallics 1988, 7, 524; R. Bertani, A. Berton, F. Di Bianca and B. Crociani, J. Organomet. Chem. 1988, 348, 411; A. Klose, E. Solari, R. Ferguson, C. Floriani, A Chiesi-Villa and C. Rizzoli, Organometallics 1993, 12, 2414; K.-L. Lu, H.-J. Chen, P.-Y. Lu, S.-Y. Li, F.-E. Hong, S.-M. Peng and G.-H. Lee, Organometallics 1994, 13, 585.

- J. Cámpora, E. Carmona, E. Gutiérrez. P. Palma, M. L. Poveda and C. Ruiz, *Organometallics* 1992, 11, 11; J. Cámpora, E. Gutiérrez, A. Monge, M. L. Poveda, C. Ruiz and E. Carmona, *Organometallics* 1993, 12, 4025.
- E. Carmona, P. Palma, M. Paneque and M. L. Poveda, Organometallics 1990, 9, 583.
- H. F. Klein and H. H. Karsch, Chem. Ber. 1973, 106, 1433.
- E. Carmona, F. González, M. L. Poveda, J. L. Atwood and R. D. Rogers, J. Chem. Soc., Dalton Trans. 1980, 2108.
- M. Bochmann, I. Hawkins, L. J. Yellowlees, M. B. Hursthouse and R. L. Short, *Polyhedron* 1989, 8, 1351.
- C. K. Johnson, ORTEP II, Oak Ridge National Laboratory, Tennessee (1971).
- International Tables for X-Ray Crystallography, Vol. 4, pp. 72–98. Kynoch Press, Birmingham (1974).
- N. Walker and D. Stuart, Acta Crystallogr., Sect. A 1983, 39, 158.
- J. M. Stewart, XRAY 80 System, Computer Science Center, University of Maryland, College Park, Maryland (1985).